## **APPENDIX E**

## Relationship Between Cable Tension and Curvature

For design conditions of uniform reactive stress, and constant cable tension, the radius of curvature is the same for each span.



Hoop Stress T = R x w

Where T = Cable Tension (kN)

R = Circle Radius (m)

W = Applied Stress (kN/m)

Therefore Radius:  $R = \frac{T}{w}$  Equation No. (1)



## Equation No. (2)

Sag: 
$$d = R - \frac{\sqrt{4R^2 - L^2}}{2}$$

Substitute (1) into (2) Then:

$$d = \frac{T}{W} - \frac{\sqrt{4(\frac{T}{W})^2 - L^2}}{2}$$

## **Example:**

How to use theory to determine a depth of cut that results in a uniformly stressed sail.

• Allowable stress: = 0.25 kN/m

= 4.6kNCable Tension:

Therefore Depth: 
$$d_{AB} = \left(\frac{4.6}{0.25}\right) - \frac{\sqrt{4\left(\frac{4.6}{0.25}\right)^2 - 8.5^2}}{2} = 0.50$$

$$d_{AC}=d_{CB}=0.25$$





between depth and span can be derived as follows:-

Take moments about A



T.d = 
$$\frac{\text{wL}}{2} \cdot \frac{\text{L}}{4}$$
  $\therefore$  d =  $\frac{\text{wL}^2}{8\text{T}}$ 

For constant cable tension and reactive stress,  $d = kL^2$  where k is constant.

$$\therefore \frac{d_n}{d_1} = \left(\frac{L_n}{L_1}\right)^2$$

This equation is approximate and should only be used for initial design.